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Abstract
We present a discrete multiscale expansion of the lattice potential Korteweg–de
Vries (lpKdV) equation on functions of an infinite order of slow varyness. To
do so, we introduce a formal expansion of the shift operator on many lattices
holding at all orders. The lowest secularity condition from the expansion of
the lpKdV equation gives a nonlinear lattice equation, depending on shifts of
all orders, of the form of the nonlinear Schrödinger equation.

PACS numbers: 02.30.Ik, 02.30.Jr

1. Introduction

Reductive perturbation techniques [14, 15] have proved to be important tools to find
approximate solutions for many physical problems by reducing a given nonlinear partial
differential equation to a simpler equation, which is often integrable [4]. Recently, few
attempts to carry over this approach to partial difference equations have been proposed [3, 6–9].

The basic tool of the discrete reductive perturbation technique developed in [7, 9] is a
proper multiscale expansion carried out by introducing various scales and lattices defined on
them. Let us recall some of the main results. The transformation between two different lattices
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of indices n and n1 is given by [5]

�j
nun

.=
j∑

i=0

(−1)j−i

(
j

i

)
un+i = j !

∞∑
i=j

Pi,j

i!
�i

n1
un1 , (1.1)

where un : Z → R is a function defined on a lattice of index n ∈ Z and un1 : Z → R is the
same function on a lattice of index n1 ∈ Z. By the symbol � we mean the standard forward
difference of the function u w.r.t. its subscript, e.g. �nun

.= un+1 − un. Here, the coefficients
Pi,j are given by

Pi,j
.=

i∑
k=j

ωkSk
i S

j

k ,

where ω is the ratio of the increment in the lattice of variable n1 with respect to that of
variable n. The coefficients Sk

i and S
j

k are the Stirling numbers of the first and second kinds,
respectively [2]. Equation (1.1) implies that a finite difference in the discrete variable n
depends on an infinite number of differences on the variable n1, e.g. the function un+1 can be
written as a combination of the functions ui’s for i varying on an infinite subset of the lattice
with index n1. Formula (1.1) can be inverted yielding

�j
n1

un1 = j !
∞∑

i=j

Qi,j

i!
�i

nun, Qi,j
.=

i∑
k=j

ω−kSk
i S

j

k .

In [7, 9] one has introduced the notion of slow varyness of order � for a function un

iff ��+1
n un = 0 (or equivalently ��+1

n1
un1 = 0; see [9] for further details). This definition

enables us to reduce infinite series to a finite number of terms. Moreover one has considered
a generalization of formula (1.1) in order to deal with functions un = un;{ni }Ki=1

, depending on
a finite number K of lattice variables ni, 1 � i � K .

The computations done in [7] for � = 2 proved that the integrable lattice equation, known
as the lattice potential Korteweg–de Vries (lpKdV) equation, reduces to a completely discrete
nonlinear Schrödinger (dNLS) equation of the form

i(φn,m+1 − φn,m) + c1(φn+1,m − 2φn,m + φn−1,m) + c2φn,m|φn,m|2 = 0, (1.2)

with c1, c2 as real coefficients. Let us stress on the fact that the above dNLS equation has a
completely local nonlinear part. We refer to [7, 9] for further details. It has been proved by
singularity confinement [13] and algebraic entropy [16] that the constructed dNLS equation is
not integrable.

In [4] Calogero and Eckhaus have shown that a necessary condition for the integrability
of a nonlinear partial differential equation is that its multiscale reduction be integrable. Here,
trying to find a lattice analogue of the Calogero–Eckhaus theorem, we extend the techniques
developed in [7, 9] to any order of slow varyness.

In section 2, we introduce a formal multiscale expansion holding at all orders of slow
varyness. Then in section 3 we apply such techniques to the lpKdV equation, thus providing
an extension to all orders of the dNLS equation obtained in [7, 9]. Finally, section 4 is devoted
to some concluding remarks.

2. Multiscale expansion on a lattice

2.1. Lattices and shifts defined on them

Let un : Z → R be a function defined on a lattice of index n ∈ Z. We can always extend it to
a real function u : R → R by defining a real continuous variable x

.= nσx , where σx ∈ R is
the lattice spacing.
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Let us define the shift operator Tn such that Tnun
.= un+1. For u(x) we can introduce the

operator Tx , corresponding to Tn, such that Txu(x)
.= u(x + σx). The Taylor expansion of

u(x + σx) centered in x reads

Txu(x) = u(x) + σxu
(1)(x) +

σ 2
x

2
u(2)(x) + · · · +

σ i
x

i!
u(i)(x) + · · · =

∞∑
i=0

σ i
x

i!
u(i)(x), (2.1)

where u(i)(x)
.= diu(x)/dxi .= di

xu(x), with dx as the total derivative operator. Equation (2.1)
suggests the following formal expansion for the differential operator Tx :

Tx
.= eσxdx =

∞∑
i=0

σ i
x

i!
di

x.

Introducing a formal derivative with respect to the index n, say δn, we can define, by analogy
with Tx , the operator Tn as

Tn
.= eδn =

∞∑
i=0

δi
n

i!
. (2.2)

The formal expansion (2.2) can be inverted, yielding

δn = ln Tn = ln(1 + �n) =
∞∑
i=1

(−1)i−1

i
�i

n, (2.3)

where �n
.= �+

n

.= Tn − 1 is the discrete first right difference operator w.r.t. the variable n, see
equation (1.1). Note that this is just one of the possible inversion formulae for the operator δn.
For example, it can be also written in terms of left difference operators �−

n

.= 1 − T −1
n :

δn = − ln T −1
n = −ln(1 − �−

n ) =
∞∑
i=1

(�−
n )i

i
,

or in terms of symmetric difference operators �s
n

.= (
Tn − T −1

n

)/
2:

δn = sinh−1�s
n =

∞∑
i=1

Pi−1(0)

i

(
�s

n

)i
,

where Pi(x) is the ith Legendre polynomial evaluated in x = 0. Hence the δn operators are
formal series containing infinite powers of �n, but, acting on slow-varying functions of order
�, they reduce to polynomials in �n of order at most �. Consequently, any formula written in
terms of powers of δn for a given slow-varyness order � contains its version for smaller orders
j < �.

The convergence of the series δnun depends on the analyticity properties of the function
un. Hence, from now on, we will proceed formally, considering that the developments can
be justified a posteriori, because the functions which finally appear (solutions to the resulting
difference equations) will have the correct analyticity properties.

2.2. Dilations on the lattice

Let us introduce a second lattice, obtained from the first one by a dilation. At first it is
convenient to visualize the problem as a change of variable between the continuous variable
x ∈ R and a new continuous variable x1

.= εx, 0 < ε � 1. On the lattice one considers a
change from the index n

.= x/σx to the new index n1
.= x1/σx1 , where σx1 is the new spacing.

Assuming that σx1 � σx we can set σx
.= εσx1 , 0 < ε � 1, so that n1 = εεn. As n, n1 ∈ Z,
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εε is a rational number and one can define in all generality εε
.= M1/N � 1 with M1, N ∈ N.

However, if we want that the lattice of index n1 is a sublattice of the lattice of index n, we also
have to require that M1/N = 1/M with M ∈ N.

The relationship between the discrete derivatives defined in the two lattices is given by
equation (1.1), for which we shall give a straightforward proof based on the well-known
formulae [2]

(ex − 1)j = j !
∞∑

k=j

S
j

k

k!
xk, [ln(1 + x)]k = k!

∞∑
i=k

Sk
i

i!
xi.

Here n1 = n(M1/N), and thus ω = M1/N . From the expression of �
j
n, j ∈ N, we get by a

straightforward algebra:

�j
n = (Tn − 1)j = (eσxdx − 1)j = j !

∞∑
k=j

S
j

k

(σxdx)
k

k!

= j !
∞∑

k=j

S
j

k

k!

(
εσx

σx1

)k

(σx1dx1)
k = j !

∞∑
k=j

S
j

k

k!

(
εσx

σx1

)k

[ln(1 + �n1)]
k

= j !
∞∑

k=j

S
j

k

k!

(
εσx

σx1

)k

k!
∞∑
i=k

Sk
i

i!
�i

n1
= j !

∞∑
i=j

1

i!

 i∑
k=j

(
εσx

σx1

)k

Sk
i S

j

k

�i
n1

.

As σx = εσx1 and εε = M1/N , equation (1.1) is proven.

2.3. Discrete multiscale expansion

We present here the formulae necessary to construct a discrete multiscale expansion.
According to the definitions given above, let us consider u

.= un;n1 = u(x; x1) as a function
depending on a fast index n and a slow index n1 = n(M1/N). At the continuous level, the total
derivative dx acting on functions u(x; x1) is the sum of partial derivatives, i.e. dx = ∂x + ε∂x1 .
What is the situation on the lattice? Let us construct a relation between the total shift operator
Tn and the partial shift operators Tn, Tn1

(
Tnun;n1 = un+1;n1 , Tn1un;n1 = un;n1+1

)
. As

Tx = eσxdx = eσx∂x eεσx∂x1 ,

we can write

Tn = eδn e(M1/N)δn1
.= TnT (M1/N)

n1
, (2.4)

with

Tn
.=

∞∑
i=0

δi
n

i!
, T (M1/N)

n1

.=
∞∑
i=0

(M1/N)i

i!
δi
n1

, (2.5)

where δn1 is given by equation (2.3) with n substituted by n1.
Equation (2.4) can be easily extended to the case of K slow variables xi

.= εix, 1 � i � K .
The action of the shift operator Tn on a function u

.= un;{ni }Ki=1
depending on both fast and slow

variables can be written in terms of the partial shifts Tn, Tni
:

Tn
.= Tn

K∏
i=1

T (εni
)

ni
, (2.6)

where εni
’s are suitable functions of ε and ε depending parametrically on some integer

coefficients Mi ∈ N, 1 � i � K .
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To develop the fields appearing in partial difference equations with two independent
discrete variables one has to consider the action of the operator (2.6) on a function depending
on two fast indices n and m, and on a set of Kn + Km slow variables {ni}Kn

i=1 and {mi}Km

i=1, i.e.
on u

.= un,m;{ni }Kn
i=1,{mi }Km

i=1
. Note that, in principle, it is possible to consider Kn = Km = ∞.

For the moment we assume a common definition of the small parameter ε for both discrete
variables n and m, but we denote with Mi the integers for the slow variables ni and with M̃i

the ones for mi . We have

εni

.= Mi

Ni
, 1 � i � Kn, εmi

.= M̃i

Ni
, 1 � i � Km.

In the following section we shall consider a partial difference equation defined on a
quadrilateral lattice, namely an equation of the type f (u, Tnu, Tmu, TnTmu) = 0. Assuming
Kn = 1 and Km = K , we get from equations (2.5), (2.6) the following expansions for the
shift operators appearing in the equation f (u, Tnu, Tmu, TnTmu) = 0:

Tn = TnT
(εn1 )

n1 = Tn

[
1 +

1

N
M1δn1 +

1

2

M2
1

N2
δ2
n1

+
1

6

M3
1

N3
δ3
n1

+ O(1/N4)

]
, (2.7)

Tm = Tm

K∏
i=1

T (εmi
)

mi
= Tm

[
1 +

1

N
M̃1δm1 +

1

N2

(
M̃2

1

2
δ2
m1

+ M̃2δm2

)

+
1

N3

(
M̃3

1

6
δ3
m1

+ M̃1M̃2δm1δm2 + M̃3δm3

)
+ O(1/N4)

]
, (2.8)

TnTm = TnT
(εn1 )

n1 Tm

K∏
i=1

T (εmi
)

mi
= TnTm

[
1 +

1

N

(
M1δn1 + M̃1δm1

)
+

1

N2

(
M2

1

2
δ2
n1

+ M1M̃1δn1δm1 +
M̃2

1

2
δ2
m1

+ M̃2δm2

)
+

1

N3

(
M3

1

6
δ3
n1

+
M2

1

2
M̃1δ

2
n1

δm1 +
M̃2

1

2
M1δn1δ

2
m1

+ M1M̃2δn1δm2

+
M̃3

1

6
δ3
m1

+ M̃1M̃2δm1δm2 + M̃3δ
3
m3

)
+ O(1/N4)

]
. (2.9)

3. Multiscale expansion of the lpKdV equation

The lattice potential lpKdV equation is given by [12]

P .= (p − q + un,m+1 − un+1,m)(p + q − un+1,m+1 + un,m) − (p2 − q2) = 0, (3.1)

where p, q, p �= q, are two real parameters. The above equation is probably the best-known
completely discrete nonlinear equation which involves just four points which lay on two
orthogonal infinite lattices, and it is nothing else but the nonlinear superposition formula for
the Korteweg–de Vries equation.

By defining µ
.= p − q and ζ

.= p + q, equation (3.1) can be written as

P .= [µ(TnTmu− u) + ζ(Tnu− Tmu)] − [(Tnu− Tmu)(TnTmu− u)]
.= P� −Pn� = 0, (3.2)

where P� and Pn� denote respectively the linear and the nonlinear parts of the lpKdV equation.
The linear part P� has a travelling wave solution of the form u = exp{i[κn − ω(κ)m]} with

ω(κ) = −2 arctan

(
ζ + µ

ζ − µ
tan

κ

2

)
. (3.3)
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Applying expansions (2.7)–(2.9) to the function u
.= un,m;n1,{mi }Ki=1

,P� takes the form

P� =
∞∑
i=0

1

Ni
Liu,

where the operators Li
.= Li

(
Tn, Tm, δn1 , {δmj

}Kj=1

)
can be constructed in a recursive way. The

lowest operators Li, i = 0, 1, 2, read

L0
.= µ(TnTm − 1) + ζ(Tn − Tm),

L1
.= µTnTm

(
M1δn1 + M̃1δm1

)
+ ζ

(
M1Tnδn1 − M̃1Tmδm1

)
,

L2
.= µTnTm

[
M2

1

2
δ2
n1

+ M1M̃1δn1δm1 +
M̃2

1

2
δ2
m1

+ M̃2δm2

]
+ ζ

[
M2

1

2
Tnδ

2
n1

− Tm

(
M̃2

1

2
δ2
m1

+ M̃2δm2

)]
.

As nonlinearity generates harmonics, let us now expand the function u as

u
.=

∑
α∈Z

u(α)
(
n1, {mi}Ki=1;N

)
eiα(κn−ωm).

As u is assumed to be real then u(−α) = ū(α), where by ū we denote the complex conjugate of
u. Moreover, if the nonlinear part should enter as a perturbation in the multiscale expansion
of equation (3.2), we need u(α)

(
n1, {mi}Ki=1;∞) = 0,∀α ∈ Z. This implies that we have to

expand each function u(α) in inverse powers of N:

u(α)
(
n1, {mi}Ki=1;N

) .=
∞∑

k=1

1

Nk
u

(α)
k

(
n1, {mi}Ki=1

)
.

Then P� reads

P� =
∑
α∈Z

∞∑
i=1

1

Ni

i−1∑
k=0

Lku
(α)
i−k

(
n1, {mj }Kj=1

)
eiα(κn−ωm).

Performing the multiscale expansion of equation (3.2), we get several determining
equations obtained selecting the different powers of 1/N and the different harmonics α.

So, let us write down the resulting determining equations at the lower orders of 1/N for
the harmonics α = 0, 1, 2, necessary to get a dNLS equation as a secularity condition.

The order 1/N gives, for α = 0, 1, linear equations which are identically satisfied by
taking into account the dispersion relation (3.3). For |α| � 2, one gets some linear equations
whose only solution is given by u

(α)
1 = 0.

The order 1/N2 gives, for the harmonics α = 0, 1, 2, the following equations:[
(µ + ζ )M1δn1 + (µ − ζ )M̃1δm1

]
u

(0)
1 = 2(−eiκ − e−iκ + eiω + e−iω)

∣∣u(1)
1

∣∣2
, (3.4)

eiκ(µ e−iω + ζ )M1δn1u
(1)
1 + e−iω(µ eiκ − ζ )M̃1δm1u

(1)
1 = 0, (3.5)

[ζ(e2iκ − e−2iω) + µ(e2i(κ−ω) − 1)]u(2)
2 = (−eiκ + e−iω + ei(2κ−ω) − ei(κ−2ω))

(
u

(1)
1

)2
. (3.6)

The solution of equation (3.5) is given by u
(1)
1

(
n1, {mi}Ki=1

) = u
(1)
1

(
n2, {mi}Ki=2

)
with

n2
.= n1 + γm1, γ

.= ∓1, provided that the integers M1 and M̃1 are chosen as

M1 = γ S e−iω(µ eiκ − ζ ), M̃1 = −S eiκ(µ e−iω + ζ ), (3.7)

where S ∈ C is a constant. As has been shown in [9] one can always choose S = r exp(iθ),
with r > 0 and θ = −arctan[(ζ sin κ)/(ζ cos κ − µ)], in such a way that M1 and M̃1 are
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indeed positive integers. Taking into account the dispersion relation (3.3), the coefficients M1

and M̃1 in equation (3.7) can be rewritten as

M1 = γ S(µ − ζ eiκ), M̃1 = S eiκ ζ 2 − µ2

µ eiκ − ζ
. (3.8)

Equations (3.4) and (3.6) allow us to express u
(0)
1 and u

(2)
2 in terms of u

(1)
1 and

ū
(1)
1 , respectively. As u

(1)
1 is a function of n2 the same must be for u

(0)
1 and u

(2)
2 , i.e.

u
(0)
1

(
n1, {mi}Ki=1

) = u
(0)
1

(
n2, {mi}Ki=2

)
and u

(2)
2

(
n1, {mi}Ki=1

) = u
(2)
2

(
n2, {mi}Ki=2

)
. Then, taking

into account equation (3.8), we find that equations (3.4) and (3.6) reduce respectively to

δn2u
(0)
1 = α1

∣∣u(1)
1

∣∣2
, α1

.= − 2γ (1 + eiκ)2

S eiκ(µ + ζ ) (µ − ζ eiκ)
, (3.9)

u
(2)
2 = α2

(
u

(1)
1

)2
, α2

.= 1 + eiκ

(1 − eiκ)(µ + ζ )
. (3.10)

We can now consider the equation for the harmonic α = 1 at order 1/N3. We have(
σ1δn1 + σ2δm1

)
u

(1)
2 +

(
σ3δ

2
n1

+ σ4δ
2
m1

+ σ5δn1δm1 + σ6δm2

)
u

(1)
1

= u
(1)
1

(
σ7δn1 + σ8δm1

)
u

(0)
1 + σ9ū

(1)
1 u

(2)
2 , (3.11)

where, taking into account equation (3.8), the coefficients σi, 1 � i � 9, read

σ1
.= γ S eiκ(µ − ζ eiκ)(µ2 − ζ 2)

µ eiκ − ζ
, σ2

.= −γ σ1,

σ3
.= 1

2
γ S(µ − ζ eiκ)σ1, σ4

.= σ 2
1

2(µ − ζ eiκ)
,

σ5
.= − γµσ 2

1

(µ2 − ζ 2)
, σ6

.= M̃2(µ − ζ eiκ),

σ7
.= σ1(e2iκ − 1)

eiκ(µ + ζ )
, σ8

.= S eiκ(µ2 − ζ 2)(µ + ζ )(1 − e2iκ)

(µ eiκ − ζ )2
,

σ9
.= ζµ

(
e2iκ − 1

)2
(eiκ + 1)2 (µ − ζ )

eiκ (µ − ζ eiκ) (µ eiκ − ζ )2
.

Using equations (3.9) and (3.10), we can write equation (3.11) as(
σ1δn1 + σ2δm1

)
u

(1)
2 = L

(
u

(1)
1

)
, (3.12)

where L is a linear operator. Note that the lhs of equation (3.12) is the same as in formula
(3.5), but it involves the field u

(1)
2 , instead of u

(1)
1 . Requiring that no secular term appears, we

get the following equation for u
(1)
1 = u

(1)
1

(
n2, {mi}Ki=2

)
:(

σ3δ
2
n1

+ σ4δ
2
m1

+ σ5δn1δm1 + σ6δm2

)
u

(1)
1 = u

(1)
1

(
σ7δn1 + σ8δm1

)
u

(0)
1 + σ9ū

(1)
1 u

(2)
2 . (3.13)

Then from equation (3.12) we see that u
(1)
2 will satisfy the equation

(
σ1δn1 + σ2δm1

)
u

(1)
2 = 0,

i.e. u
(1)
2

(
n1, {mi}Ki=1

) = u
(1)
2

(
n2, {mi}Ki=2

)
whenever equation (3.8) holds. Using equations

(3.9), (3.10) we find that equation (3.13) is equivalent to the dNLS equation

iδm2u
(1)
1 = ρ1δ

2
n2

u
(1)
1 + ρ2u

(1)
1

∣∣u(1)
1

∣∣2
, (3.14)
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where

ρ1
.= iζµS2 eiκ(ζ 2 − µ2)(e2iκ − 1)

2M̃2(µ eiκ − ζ )2
,

ρ2
.= iζµ(µ − ζ )(e2iκ − 1)(eiκ + 1)4

M̃2 eiκ(µ + ζ )(µ eiκ − ζ )2(ζ eiκ − µ)2
.

Taking into account the form of S, one finds that ρ1 and ρ2 are both real numbers:

ρ1 = − µζr2(ζ 2 − µ2) sin κ

M̃2(ζ 2 + µ2 − 2ζµ cos κ)
,

ρ2 = 8ζµ(ζ − µ)(1 + cos κ)2 sin κ

M̃2(µ + ζ )(ζ 2 + µ2 − 2ζµ cos κ)2
.

Note that ρ1ρ2 < 0, so that equation (3.14) is a defocusing dNLS equation. Moreover, as the
coefficients ρ1 and ρ2 are real equation (3.14) is integrable.

With equation (3.14), one can associate the linear problem

δn2�n2,m2(η) = U
(
u

(1)
1 , ū

(1)
1 ; η

)
�n2,m2(η), (3.15)

δm2�n2,m2(η) = V
(
u

(1)
1 , ū

(1)
1 ; η

)
�n2,m2(η), (3.16)

where

U
(
u

(1)
1 , ū

(1)
1 ; η

) .=
(

iη u
(1)
1

ū
(1)
1 −iη

)
,

V
(
u

(1)
1 , ū

(1)
1 ; η

) .=
(

2iη2 + i
∣∣u(1)

1

∣∣2
2ηu

(1)
1 − iδn2u

(1)
1

2ηū
(1)
1 + iδn2 ū

(1)
1 −2iη2 − i

∣∣u(1)
1

∣∣2

)
,

η ∈ C being the spectral parameter and �n2,m2(η) a discrete complex vector function. The
compatibility condition of equations (3.15) and (3.16) gives equation (3.14).

4. Concluding remarks

In this paper we have extended the results obtained in [7, 9] to the case of functions of slow
varyness of order infinity. To do so we have used the connection between shift operators and
infinite series of differential operators (2.2). Using these formulae we have been able to easily
recover formula (1.1), usually proved by combinatorial techniques [5]. Moreover, in analogy
with the continuous case we can introduce partial shift operators, which are expressed in terms
of δ operators, namely infinite series of difference operators.

The multiscale expansion of the lpKdV equation in terms of harmonics implies, as
a condition for the non-existence of secular terms, a NLS equation written in terms of
δ operators. Choosing δn2 in equation (3.14) as a series of symmetric differences and
fixing � = 2, the resulting dNLS equation is equivalent to that presented in [7, 9]; see
equation (1.2). In this way we have shown that for any finite order of slow varyness, the
obtained dNLS equation will be local and no summation terms will ever appear.

As shown in section 3, equation (3.14) has the matrix Lax pair (3.15), (3.16), which is
also expressed in terms of δ operators. Such Lax pair has a reduction to any finite order of slow
varyness, provided that the associated wavefunctions �n2,m2(η) have the same finite order of
slow varyness. However, in the case of finite �, the Lax pair (3.15), (3.16) reduces to difference
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equations and their compatibility is no more satisfied by the slow-varying approximation of
equation (3.14). In fact, the difference operators � do not satisfy the Leibniz rule.

This work still leaves many open problems on which we are working at the moment.
Let us just mention the analysis of the solutions of the lpKdV equation obtained from the
exact ones of the reduced equation and their comparison with those obtained by carrying out a
multiscale expansion of the continuous potential KdV equation, the reduction of symmetries
of the lpKdV equation, the reduction of differential-difference equations both integrable and
nonintegrable.

It is still an open problem to understand the role played by an integrable discrete equation
like the nonlocal discrete NLS equation introduced by Ablowitz and Ladik [1] from the
isospectral compatibility of a discrete analogue of the Zakharov–Shabat spectral problem
(3.15), (3.16):

i
�mun,m

�t
= 1

2(�x)2

[(
un+1,m − 2un,m + un−1,m

n−1∏
k=−∞

�k,m

)

+

(
un+1,m+1

n∏
k=−∞

�k,m − 2un,m+1 + un−1,m+1

)]

± 1

4

[
un,m(ūn,mun+1,m + ūn,m+1un+1,m+1) + un,m+1(un−1,mūn,m + un−1,m+1ūn,m+1)

+ 2|un,m|2un+1,m+1

n∏
k=−∞

�k,m + 2|un,m+1|2un−1,m

n−1∏
k=−∞

�k,m

]

− un,m

n∑
k=−∞

�mSk,m − un,m+1

n−1∑
k=−∞

�mS̄k,m, (4.1)

with

�k,m
.= 1 ± |uk,m+1|2

1 ± |uk,m|2 , Sk,m
.= uk,mūk−1,m + uk+1,mūk,m.

Equation (4.1) reduces to the continuous NLS equation when �t → 0 and �x → 0.
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